If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10=6t-t^2
We move all terms to the left:
-10-(6t-t^2)=0
We get rid of parentheses
t^2-6t-10=0
a = 1; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·1·(-10)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{19}}{2*1}=\frac{6-2\sqrt{19}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{19}}{2*1}=\frac{6+2\sqrt{19}}{2} $
| 8c+4-5c=4-4(c+5) | | 20=9x+ | | y÷2+5=7 | | 5(-6-3n)=-13+2n | | 6(x-5)+3=-27 | | 5x-4x+9=18 | | m-84/(-5)=(-3) | | F(2x+3)=-x+5 | | x+7=-14+x-3-4x | | 5x-10+50=9x-8 | | 7*5=14+p | | f/5+(-11)=(-16) | | 3=p/20 | | f5+ -11= -16 | | 5=x/95 | | 3r=63 | | 69-j=46+10 | | 5^2x=22 | | 7(w+67)=-77 | | 3y-(-13)=61 | | n+16=49 | | 2x|3=30 | | 4y+3y+5y+2y-7y=14 | | (5z/6)+(z/3)=30 | | -2(x-5)=6(2-1/2x | | 4x²-12x+9=0 | | 75+6x-75=-75 | | 4y=2(y+-5)+-2 | | 3(g-4)=7g-6/5 | | 2x——9=3 | | 41+45=n-34 | | 2x/3+4=2× |